On Arithmetic Zariski Pairs in Degree 6

نویسنده

  • ICHIRO SHIMADA
چکیده

We define a topological invariant of complex projective plane curves. As an application, we present new examples of arithmetic Zariski pairs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ICHIRO SHIMADA Definition 1

We define a topological invariant of complex projective plane curves. As an application, we present new examples of arithmetic Zariski pairs.

متن کامل

SHIMADA Definition 1

We define a new topological invariant of complex projective plane curves. As an application, we present examples of arithmetic Zariski pairs.

متن کامل

Non-homeomorphic Conjugate Complex Varieties

We present a method to produce examples of non-homeomorphic conjugate complex varieties based on the genus theory of lattices. As an application, we give examples of arithmetic Zariski pairs.

متن کامل

A Note on Zariski Pairs

Definition. A couple of complex reduced projective plane curves C1 and C2 of a same degree is said to make a Zariski pair, if there exist tubular neighborhoods T (Ci) ⊂ P of Ci for i = 1, 2 such that (T (C1), C1) and (T (C2), C2) are diffeomorphic, while the pairs (P, C1) and (P , C2) are not homeomorphic; that is, the singularities of C1 and C2 are topologically equivalent, but the embeddings ...

متن کامل

ar X iv : 0 80 6 . 33 11 v 2 [ m at h . A G ] 5 J un 2 00 9 ZARISKI - VAN KAMPEN METHOD AND TRANSCENDENTAL LATTICES OF CERTAIN SINGULAR K 3 SURFACES

We present a method of Zariski-van Kampen type for the calculation of the transcendental lattice of a complex projective surface. As an application, we calculate the transcendental lattices of complex singular K3 surfaces associated with an arithmetic Zariski pair of maximizing sextics of type A10 + A9 that are defined over Q( √ 5) and are conjugate to each other by the action of Gal(Q( √

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006